Energizing communities with sustainable systems

A student smiling in the middle of a field.

Photos by Chance Saechao.

Working toward bachelor’s degrees in energy systems engineering and sustainability at Oregon State University-Cascades in Bend, Dallas Bennett is dedicated to designing greener systems on a local level.

“I’m from Silverton, Oregon,” Bennett said. “Growing up in a small town, I have a tight-knit sense of community. It would be really nice to work directly with any community that I’m a part of.”

In Silverton, Bennett’s parents own a restaurant. Originally envisioning a similar career, she entered OSU-Cascades as a business major in 2019. However, when the pandemic struck, she reevaluated her goals and explored other degree options. In 2020, she took an introductory course in mechanical, industrial, and manufacturing engineering; for Bennett, this was enough to confirm her love of engineering and put her on a path toward a bachelor’s in energy systems engineering.

“I’ve always wanted to build things. The energy systems engineering program seemed like a good opportunity to push myself,” Bennett reflected. “It’s not the easiest degree, but I’ve definitely learned a lot.”

Besides engineering, Bennett has valued the concept of sustainability since childhood. Memories of her electricity-conscious grandmother and family camping trips at Detroit Lake firmly instilled in her the importance of environmental preservation.

“At campgrounds, I’d see places being affected by the more intense fires and natural disasters,” Bennett said. “That played a big role in my interest. Sustainability is a much bigger picture than just yourself; it has to be a societal change.”

In 2021, Bennett joined the OSU-Cascades Energy Systems Laboratory managed by Chris Hagen, associate professor of energy systems engineering and interim director of research. There, she started out writing grant proposals for research funding, but her work became more hands-on that December, when she received a Layman Fellowship to conduct undergraduate research with a faculty mentor.

Bennett’s Layman project with Hagen, which she presented at the OSU-Cascades Student Research and Scholarship Symposium in May, entailed modifying a fan to better control temperature and heat emissions from wood stoves to make the stoves burn more cleanly.

“We were interested in seeing the effect of air from a fan and how it controlled our heat source, a fake log,” Bennett said. “I ended up controlling the fan speed to stay at a set temperature, although the heater produced different amounts of heat at different times.”

Now, Bennett’s research project has become her ongoing work with Hagen. Most recently, she has been disassembling and rewiring space heaters to determine a framework for an upgraded heat-control system for the stoves. She will continue to add components to her design until it eventually functions as she intended.

“Because wood stove emissions are partially burned, we’re releasing things in the air that shouldn’t be,” Bennett explained. “But if we find the perfect temperature at which wood burns fully, and its emissions are at the right levels, it’ll be a cleaner burn. So, we’ll retrofit fans onto older wood stoves and make them smart controlled based on the stove temperature.”

Hagen noted that Bennett has “a passion for clean energy research and leadership with laboratory skills beyond some graduate students.” He also appreciates Bennett’s positive attitude and collegiality, which enhances the team dynamic in his lab. “I can speak for my entire research group by saying we all thoroughly enjoy working with Dallas,” he said.

Hagen encouraged Bennett and her lab mates, graduate student Bridger Cook and computer science Layman Fellow Seth Weiss, to enter the Hydrogen Business Case Competition, part of the Department of Energy’s American-Made Challenge series.

“The challenge was to create a business case for people to see if hydrogen is suitable for their community and how it fits into other energy systems,” Bennett said. “The first phase was outlining what we wanted to do and what we wanted to focus on, which ended up being biomass gasification.”

For phase 1 of the competition, teams across the nation conceptualized user-friendly analysis tools to pinpoint business opportunities with clean hydrogen energy for local economies. For phase 2, a select few teams with the most promising tools were tasked with designing them. One of those teams was Bend Hydrogen — Cook, Bennett, and Weiss — who offered up the Biomass gasification Optimal Business Case Analysis Tool, or BOBCAT.

“Bridger, a grad student, is actually doing a lot of work in biomass gasification and has a different grant working on some of that, so he definitely took the lead,” Bennett explained. “He coded and did foundational work on BOBCAT. Then, I made it more user-friendly and double- checked his work, which involved many formulas, and revamped our model in the end to make sure it looked clean and professional.”

Bend Hydrogen won second place overall in the competition, receiving $30,000 and DOE- sponsored internships with organizations of their choice.

As Bennett contemplates her internship options, she will continue to enjoy her research and courses, weekly bouldering as a member of the OSU-Cascades Rock Climbing Club, and the endless outdoor recreation that her adopted community offers.

Jan. 9, 2023

FY22 Research Funding Highlights

Nordica MacCarty sitting in front of a furnace.

The College of Engineering at Oregon State University is a proven leader in research, expanding knowledge and creating new engineering solutions in fields such as artificial intelligence, robotics, advanced manufacturing, clean water, materials science, sustainable energy, computing, resilient infrastructure, and health care.

In the 2021-2022 fiscal year, the College of Engineering notched its highest-ever total in research funding, with $75.8 million in awards — an increase of more than 17% over the previous record of $64.6 million, set the year before. With 321 new and continuing awards from 128 agencies (13 of them awarding $1 million or more), 140 faculty members were chosen as lead principal investigators.

Among the notable new sponsored projects:

Geoff Hollinger, associate professor of mechanical engineering and robotics, is leading a large team of researchers to develop a multi-arm robotics platform capable of performing complex manipulation tasks, such as cleaning the hulls of boats and performing routine maintenance of piers in challenging, low-visibility environments. The team, funded by a $6 million Office of Naval Research grant, will develop algorithms for coordination of the semiautonomous arms, build reactive sensor systems to provide tactile feedback, and create decision-support modules to provide easier control by human operators.

Nordica MacCarty, associate professor of mechanical engineering and the Richard and Gretchen Evans Scholar in Humanitarian Engineering, is working to reduce harmful emissions from wood- burning stoves, a primary source of heat in Native American communities and in low-resource areas in the United States. MacCarty will work with other Oregon State researchers, including Chris Hagen, professor of energy systems engineering and interim director of research at OSU- Cascades, and David Blunck, associate professor of mechanical engineering, in collaboration with tribal and industry partners to develop a firebox retrofit that uses turbulent jets of air to improve combustion efficiency, even under suboptimal conditions. Funding for the project comes from a $2.5 million grant from the Department of Energy.

Haori Yang, associate professor of nuclear science and engineering, is developing sensors to monitor nuclear waste from within storage vessels. With the storage of nuclear waste at Yucca Mountain on hold, U.S. nuclear power plants have resorted to storing waste on-site in dry storage casks. Ensuring the integrity of these canisters is critical. The Department of Energy has awarded Yang $640,000 to design externally powered sensors that can be placed inside the canisters and read from the outside. Such sensors would allow the monitoring of internal conditions difficult to assess with external sensors alone.

The National Science Foundation awarded Andre Barbosa, associate professor of structural engineering, $530,000 to develop a building-design paradigm to improve earthquake resilience while integrating sustainable building practices. The new paradigm will be applied to the design of mass timber structures.

With $500,000 in funding from the Department of Energy, Goran Jovanovic, professor of chemical engineering, is developing a microchannel device for membrane-less recovery of lithium from unconventional sources, such as byproducts of shale gas extraction. Lithium is a critical element for advanced energy storage systems.

Matthew Johnston, associate professor of electrical and computer engineering, is creating a wearable device to assess levels of anti-epileptic medication, the dosage of which is notoriously difficult to manage. The device sits in the mouth like an orthodontic retainer and monitors saliva in real time. The project is funded by a $205,000 grant from the National Institutes of Health.

Sept. 1, 2022

First the Ph.D., then it’s all downhill

A picture of Amy Glen and Stephen Ramsey talking.

Amy Glen loves skiing, so much that it factored into her decision to attend the University of Vermont, where the Alaska native majored in biology and competed with the university’s ski team.

After graduating with her bachelor’s degree, Glen worked at a lab that conducted analytical chemistry studies for pharmaceutical companies, where she worked with a lot of Excel spreadsheets. She realized that automating the manual data entry tasks would help her become more efficient in her job, but she didn’t have any programming background.

“I learned enough Visual Basic for Applications to write a macro and I thought, wow, this is awesome,” Glen said. “So I started learning more programming from there, a little bit at a time.”

That small taste sparked Glen’s interest in computer science, and she decided to enroll in Oregon State University’s online postbaccalaureate program in computer science in 2017.

“I was really grateful that the program existed,” Glen said. “I considered doing a master’s program in computer information systems at another university, but that wasn’t quite what I wanted to do, and I didn’t have the necessary prereqs for a computer science program.”

She also didn’t want to go back to school full-time to get another bachelor’s degree, and Oregon State’s online program allowed her to set her own pace while continuing to work full-time. The flexibility of the program also allowed Glen to take a break in 2018 to help set a startup company on its feet, which required her full attention for a year.

An undergraduate research experience changes everything

She resumed online classes in 2019. Knowing that she eventually wanted to get an advanced degree with the goal of conducting research in academia or industry, Glen applied for a Research Experiences for Undergraduates program in Associate Professor Stephen Ramsey’s lab.

Ramsey, who holds a joint appointment in computer science and biomedical sciences, applies bioinformatics, machine learning, artificial intelligence, and systems biology to the identification and treatment of diseases.

Glen worked on one of Ramsey’s research projects, sponsored by the National Institutes of Health, to integrate large volumes of data from myriad sources in biomedicine to help health professionals find possible solutions to treat rare diseases.

Glen’s background in biology is a great match for this research area, providing her a different perspective from that of most computer scientists.

“At first I was a little bit sad that I missed out on an undergraduate computer science experience,” Glen said. “But as I got up to speed and I didn’t feel behind my peers, I realized that it’s totally an asset coming from a different background like I do.”

Her previous career is giving her an advantage as well.

“Her experiences working at a lab in industry and as a startup founder give her really great instincts for working on a software team,” Ramsey said.

Glen thought she would wait about a year before attempting an advanced degree, but Ramsey encouraged her to apply for computer science doctoral programs right away.

“She has a knack for solving technical problems quickly and decisively,” he said. “On her own initiative, she solved a key challenge for our research that I had shied away from working on because I thought it would be too hard — this before she even started on her Ph.D.!”

Amy Glen skiing
Amy Glen loves skiing and takes the opportunity to hit the slopes on the mountains in nearby central Oregon.
Taking the leap to graduate school

Though she wasn’t sure she had the qualifications to get accepted to a graduate program, Glen applied at six schools in fall 2019 and was accepted at four universities, including Oregon State.

She decided to continue her studies at Oregon State because she enjoyed the research she was working on. Making her decision a bit easier, the School of Electrical Engineering and Computer Science offered her a fellowship in the Outstanding Scholars Program. Glen is also an ARCS scholar.

Though she didn’t finish the postbacc degree in computer science, Glen jumped right into her Ph.D. program and continued to work with Ramsey on the same research project she had started as an undergraduate.

Glen and Ramsey are working with the Institute for Systems Biology in Seattle and Penn State to integrate large amounts of information in disparate and heterogeneous databases.

“For instance, there are databases that connect genes with diseases, or proteins and their mechanism of interaction with drugs,” Glen said. “There are so many databases, but they’re all in different formats and are so disjointed that it’s difficult to piece together all that information to allow reasoning across the whole dataset.”

The goal is to integrate all those sources and make them speak a common format so they can create a querying system that health professionals can use to help find possible answers for rare diseases.

Glen still loves skiing. Since moving to Corvallis, she’s been able to take advantage of the town’s proximity to the mountains. She also enjoys mountain biking and rock climbing. After she graduates, Glen plans to work for a nonprofit research institute or in academia. Wherever it is, it will likely be where she can hit the slopes often.


June 15, 2022

Creating communities within the College of Engineering

Subisha Sundaram at outdoor roof structure of the Student Experience Center

Subisha Sundaram, an Honors College student pursuing her bachelor’s degree in radiation health physics, appreciates the student support systems in the College of Engineering and throughout Oregon State University.

“One thing that’s really helped me is the communities that I’m part of on campus,” said Sundaram, now halfway through her third year. “That sense of community played a really important role in my staying within the College of Engineering. That’s something I am passionate about and try to encourage other students to become a part of.”

Sundaram’s immersion in engineering was not something she anticipated. Although her father was an engineer, she had intended to enter Oregon State as a molecular biology major. However, after reading more about applied problem-solving in engineering fields, she switched to bioengineering before her first term. A year later, still curious, she turned to her resident community in West Hall and had a meaningful conversation with her diversity learning assistant about various engineering majors.

“I learned about radiation health physics. It really tied in cancer research, something I am passionate about. I ended up switching majors, and I’ve really enjoyed it,” Sundaram said. “I’ve been able to take classes like anatomy and radiobiology. Learning about these things has taught me indirectly about some medical technologies that I never thought of.”

Since her first year, Sundaram has worked in Professor Emeritus Jadwiga Giebultowicz’s integrative biology lab, where she has studied aging and behavior of fruit flies exposed to blue light, applying problem-solving and critical thinking skills she has honed through her engineering studies. Currently, she is conducting research in Giebultowicz’s lab for her honors thesis.

“I’m looking at a specific gene, called Arc1, which is seen to be upregulated in flies under blue light exposure, trying to figure out why this occurs — essentially, whether this gene upregulation acts as a protective mechanism or hurts them under blue light,” she said.

In the summer of 2021, Sundaram interned with Oleh Taratula, professor of pharmaceutics, and Olena Taratula, associate professor of pharmaceutics, at Oregon Health & Science University in Portland, where the Taratula Lab collaborated with Daniel Marks, professor of pediatrics at OHSU School of Medicine on research more directly related to Sundaram’s radiation health interests.

“We had probes that were newly synthesized, which I worked with, along with a few other students,” Sundaram said. “We tried essentially seeing whether these probes could fluoresce in order to better image cancer. It was amazing to be able to do some of these tests behind the scenes that I’ve never done before.”

Contemplating an eventual MBA, Sundaram is now a business intern with Oregon State’s Advantage Accelerator, where she has conducted market research and learned about how startup companies become established and obtain funding. This should serve her well in the future; not only does she want to research and develop medical technologies, she wants to learn how to commercialize them.

Placing herself at the intersection of STEM and social justice, Sundaram interns for the Center for Diversity and Inclusion, which supports about 4,000 COE students from populations that have been historically denied opportunities in engineering. Sundaram conducts outreach to inform undergraduates of COE team-building events and networking opportunities with organizations that value equity, diversity, and inclusion.

“As a woman in engineering and a person of color, it can sometimes be really daunting,” Sundaram said. “I’m passionate about supporting women and helping people of color in STEM and want to promote this within engineering. You automatically find students who have shared some of the same experiences as you, but also not some of the same experiences, whom you’re able to support through these four years and, hopefully, beyond.”

An established undergraduate leader, Sundaram also serves as a COE student ambassador and as president of the Engineering Student Council. The ESC oversees all engineering clubs on campus and, crucially, allocates their funding. It also organizes Engineering Week annually and sponsors multiple events, including the annual Cookies and Clubs Fair.

“This year, we had 1,500 students attend, which was amazing after this weird fever dream that we’re living in with COVID,” Sundaram said.

Sundaram says she might work in industry initially upon graduating in 2023, but she is determined to earn an advanced degree. This could entail pharmacy school, business school, or a different program altogether. Regardless, she says, she will continue to advocate for her peers.

“I make sure to tell students it can feel like you’re a small fish swimming in a big sea coming into the College of Engineering,” Sundaram said. “But being able to find these communities can make it much smaller — like you’re at home, which is how it feels now for me.”

May 24, 2022

Reaching new heights: Pioneering female engineer left a space-age legacy

Black and white image of engineers

Growing up, Elaine Gething Davis, ’49, would hear an airplane soaring above her family’s coastal Oregon farm and rush outside with everyone else to watch it. Later, living near a military base during World War II, she was amazed by the variety of airborne machines leaping into the sky. After the war, her father bought a surplus airplane and gave the whole family flying lessons. Thus began a lifelong fascination with things that fly.

When she arrived at Oregon State College in 1945, she was the sole woman in her mechanical engineering class.

“I can recall the day as a freshman that I went to orientation. I could hear the rumble-rumble-rumble of a lot of people talking all the way down the hall, coming from a big auditorium,” she said in a 2017 interview for Boeing’s oral history archive. “When I stepped up to the door, all of a sudden, everybody quit talking.”

Elaine Davis was photographed
for a student engineering publication
in an Oregon State test laboratory.

She was one of six women among the undergraduate engineering students on campus. Before them, only three female students had ventured into engineering at Oregon State.

Her male classmates taunted her that she was “just here to get married.” She told an Oregon State Technical Record reporter that she was in engineering for a career and was not considering marriage.

“I simply would not give up, as hard as it was,” she said in the oral history. “I figured, my parents are sacrificing to send me to school. I couldn’t disappoint them.”

Many older students — men returning to Oregon State after the war — were supportive and kind. She had the support of her professors as well, especially Ben Ruffner, an aeronautical pioneer who served as a mentor to her in college and would later prove vital in her career. Eventually, even the scoffers came to treat her with respect. By her junior year, she’d zeroed in on the aeronautical option within her mechanical engineering major and was thriving in her classes.

She graduated with top honors, was quickly hired by Boeing, and moved to Seattle, renting a room at a residential hotel for women. She couldn’t wait to put her engineering training to use. But Boeing had relegated her to a clerk position. She spent her days entering data alongside other women. It was tedious, but she kept her head down and gave it her all.

One day, about a year after she’d been hired, Ruffner visited the offices to do some consulting for Boeing. After saying hello to Davis at her clerk’s desk, he marched straight to the head of the company’s human resources department. He told them he wouldn’t work with Boeing unless the company put Davis in a position worthy of her skills.

Almost immediately, Davis was reclassified as an aerodynamicist and became one of the first female space engineers at Boeing. She helped design a new wind tunnel, mapped out launches and worked on putting machines into orbit.

After hours, Davis loved to cut loose. Every Wednesday, Friday, and Saturday, she’d go with her roommate to dance the night away across Seattle. That’s how she met her husband, Phil.

“He was an electronic engineer, and we had a lot of the same interests,” she said.

She wasn’t allowed to talk about her work, even with her husband. The Cold War was ramping up, and she was doing classified work in partnership with the military. She started working on SRAMs, short range attack missiles, that could deliver nuclear warheads using a computer program to simulate their launch.

“It was scary,” she said. “I had quite a few nights of nightmares. I personally don’t believe war solves anything, but unfortunately in this world, you have to make sure you’ve got your defenses, because otherwise you’re vulnerable.”

After retiring in 1992, Davis sailed the San Juan Islands with Phil and kept dancing into her 80s. She died in 2018 at age 90.

Having grown up poor, she understood the importance of scholarships, and planned her legacy accordingly. She created a scholarship at Oregon State to support those in need, “of all races, genders and anything else,” including students of all majors. The first Elaine Gething Davis Scholarship was awarded in 2020.

April 27, 2022

Yue Cao earns NSF CAREER Award

Three engineers working on machine

Yue Cao, assistant professor of electrical and computer engineering in the Energy Systems research group, has received a Faculty Early Career Development (CAREER) Award from the National Science Foundation. The award includes a grant of nearly $500,000 over five years.

Traditional energy storage systems encompass what Cao calls “real” storage, such as batteries, supercapacitors, and fuel cells. Cao’s research aims to also incorporate currently overlooked “virtual” resources, such as HVAC systems or water heaters.

“I call those systems ‘virtual,’ because storing energy is not their primary purpose, but they consume electricity and are tied to the grid or other energy resources,” Cao said.

The purpose of Cao’s research will be to create a universal equivalent circuit for multiple energy storage systems that are controlled by connected power electronics. Cao will then develop a design approach to optimally size the hybrid energy storage systems and increase their life and reliability. By dynamically regulating virtual energy mass, this new approach aims to modulate energy usage from the grid.

“For example, if I have rooftop solar panels on my house, and it’s a sunny day and the air conditioner is on, and in the next minute a cloud blocks the sun, solar power will be reduced,” Cao said. “Current systems would use power from the grid to keep the air conditioner running. With an integrated energy system, however, the power used by the air conditioner, or the virtual resource, could be adjusted temporarily to match the reduced power of the solar panels, without my noticing a difference in temperature.”

Cao is already working on research projects that involve energy storage problems including fast charging stations for heavy-duty trucks on rural highways, electrification of locomotives, and wave energy.

March 21, 2022

Barbara Simpson earns NSF CAREER Award

A woman with a protection hat and glasses working on a project.

Barbara Simpson, assistant professor of structural engineering, has received a Faculty Early Career Development, or CAREER, award from the National Science Foundation. The award includes a grant of nearly $600,000 over five years. 

Simpson proposes to lay the algorithmic foundations for high-fidelity simulations of complex structural systems using graphics processing units, or GPUs. Her research could significantly advance the fundamental understanding of the risks posed by natural hazards to the built environment. For example, soil-structure interaction is critically important for how tall buildings respond to earthquakes, but the variable is often neglected in building design because of high computational costs and physical testing constraints. 

“We intend to harness the massive parallelism of GPUs to overcome computational bottlenecks in structural simulations, specifically real-time hybrid simulations,” Simpson said.  

In hybrid simulations — a powerful tool for analyzing structural systems — physical tests are combined with numerical models. They’re typically applied to systems that are too large or complex to undergo conventional physical testing alone. 

“We can already do some hybrid simulations in real time,” Simpson said, “but for very complicated problems, like soil-structure interaction, it’s just not feasible from a computational standpoint. If your numerical model is slow, it’s difficult to couple experimental and numerical components in real time.” 

That’s where GPUs come in. As their name suggests, GPUs were originally designed for graphics rendering. But their ability to simultaneously execute numerous discrete calculations has proven valuable for a growing number of applications, including high-speed simulations. 

Simpson will be using GPUs in Oregon State’s NVIDIA DGX-2 computing cluster, as well as GPUs in the Texas Advanced Computing Center at the University of Texas at Austin.

“By leveraging the computational power of GPUs,” Simpson said, “I want to reduce computational times from hours down to minutes and seconds and use this technology to support real-time hybrid models of very complex structural problems.”

March 7, 2022

Materials scientist spins sustainable products

Kenya Hazell working in the lab to develop polymer composites.

Since she began studying materials science as a graduate student at Oregon State University in 2015, Kenya Hazell, a GEM Fellow and recent environmental technology researcher and development intern at Corning, has sought to discover ways to sustainably create and apply polymer composites — unique materials with synergistic properties, formed by combining reinforcement materials with polymer matrices.

“Everything’s a polymer, even DNA,” Hazell said. “It’s hard to narrow down the field, because there are so many uses for composites. They’re in a ton of products you need for your everyday life, like your fridge, your desk, your car.”

Hazell was first turned on to the seemingly endless possibilities of polymer composites during a trio of internships — Garlock Sealing Technologies, UTC Aerospace Systems, and Clausthal University of Technology, in Germany — near the end of her time at the Rochester Institute of Technology, where she earned a bachelor’s degree in chemical engineering.

“After those internships, I decided I wanted to delve more into that realm and go to grad school,” Hazell said. “I chose Oregon State, because there are so many possibilities, in terms of research geared toward sustainable engineering.”

As a master’s student at Oregon State, Hazell worked on projects involving wood composites and plant fibers, including an exploration of how hemp fibers can be modified to yield greater thermal sustainability during the manufacturing process.

“Can I make a more sustainable product? Can the manufacturing process be more sustainable? And an end goal is: How can we recycle this?” Hazell wondered.

Kenya Hazell

Now, Hazell’s doctoral research, which she conducts in the lab of Vincent Remcho, professor of chemistry, focuses on electrospinning as a way to produce nanoscale fibers for thermal applications. She primarily works with structural composites similar to those used in exteriors of products such as cars and aircraft.

Complementing Hazell’s research are her recent internships with Georgia-Pacific Chemicals in 2020 and with Corning in the summer of 2021. For her research and development role at Georgia-Pacific, which she began shortly before the pandemic, she helped design experiments to study the properties of resin as a composite material and assisted in studies of wood composites. Beyond her own research, Hazell liked that chemists and chemical engineers working in different labs were eager to tell her about their projects.

“If I didn’t have anything to do, I just walked over to another lab, and if they weren’t too busy, they would tell me everything. I learned a lot about how an R&D lab works,” she said.

A year later, at Corning’s headquarters in New York, Hazell performed research and development work in the company’s environmental technology unit, where she examined methods to characterize the real-life properties of a gel material. 

“That gave me a view of what a company invested more heavily in their research sector looks like,” Hazell said.

Hazell’s internship at Corning was connected to her GEM Fellowship, through which Oregon State and Corning provide funding for her Ph.D. studies. In addition to financial support, GEM offers professional networking, conferences, and career development, and many Fellows go on to secure jobs with their internship organizations. 

As for her postdoctoral future, Hazell looks forward to making an impact on the materials science industry’s sustainability practices.

“Not everyone wants to be forced to choose a material that’s not environmentally friendly,” Hazell said. “So, how can we make a product that’s competitive to this nonrenewable product? How can we provide more ways for people to make environmentally conscious decisions? I’m creating new options for people.”

Feb. 11, 2022

More from less

Soumya Bose standing next to his research presentation board.

At Intel Labs in Hillsboro, research scientist Soumya Bose, Ph.D. electrical and computer engineering ’19, develops circuits to speed up optical data communications while reducing the amount of power they need. 

Optical links are already capable of quickly moving enormous quantities of data within and between computer networks. But still faster links will be needed to handle the world’s incessant demand to move and process data. Higher speeds, though, come at the cost of greater energy consumption, which quickly adds up in the hundreds of giant data centers around the world. 

“The high-speed, power-efficient optical links of the future will enable higher data transfer and computing capacities per unit of energy,” Bose said. “Among other things, this will enable advanced data training and analysis capabilities in applications such as machine learning and artificial intelligence.” 

For example, new machine learning methods designed to process large datasets of neural recordings could revolutionize neuroscience by providing new insights into the workings of the human brain.

High-speed optical data links are widely used for transmitting data between servers. But within servers themselves, data transmission is predominantly done electrically. At higher data rates, electrical links are less energy-efficient and more prone to errors. 

“My work, and our research at Intel Labs, focuses on bringing optical communication closer to the processor itself,” Bose said. He added that converting to optical communications at the level of computer circuit boards and chips will result in faster, more accurate data transfers between core processors and peripheral storage devices. 

Bose’s doctoral work included building energy-efficient circuits that enable portable biomedical sensing devices to operate on minuscule amounts of power generated by converting body heat into electricity. 

“The voltage from the transducers ranges from tens of millivolts to a few hundred millivolts, which is not enough to power an integrated circuit,” Bose said. “The fundamental challenge was to run semiconductors at a very low input voltage.” Bose’s solution was a new circuit architecture that started operating with only 50 millivolts. It then amplified the voltage enough to sustain long-term operation. 

Bose is the lead inventor on a patent for technology related to ultra-low-voltage circuits, as well as on a patent application for a wearable, batteryless heartbeat monitor designed to continuously gather data about a patient’s heart health. These patents also include College of Engineering faculty Matthew Johnston, associate professor of electrical and computer engineering, and Tejasvi Anand, assistant professor of electrical and computer engineering. 

According to Bose, Oregon State University was an excellent training ground. 

“Doing my doctoral work at the College of Engineering really helped me get to where I am now,” Bose said. “It’s a vibrant program where I had an opportunity to meet leaders in the field of circuit design, and I was able to work alongside great researchers on high-impact work.” 


Feb. 9, 2022
Associated Researcher

Intel engineer adapts computational chemistry skills learned at Oregon State

A picture of Kingsley Chukwu looking at a piece of machinery.

After obtaining his Ph.D. from Oregon State University’s College of Engineering in 2021, Kingsley Chukwu has transitioned to a successful career as an electronic design automation tools software engineer at Intel. However, Chukwu is not your typical software engineer; while he has a minor in computer science, his degree is in chemical engineering with a focus on computational chemistry.

“I use computer quantum software to understand how atoms and molecules will behave on catalyst surfaces,” Chukwu said. 

Chukwu’s doctoral research, a National Science Foundation-funded project, was conducted in the lab of Líney Árnadóttir, associate professor of chemical engineering. He implemented computational methods to better grasp how water and other solvents affect the selectivity and rate of acetic acid-based chemical reactions on palladium and platinum surfaces.

Notably, Intel is famous for manufacturing semiconductors, not catalysts. Even though Chukwu’s research was not directly related, the company understood that his training and perspective as a chemical engineer would be invaluable. 

“It is challenging for experimentalists to understand the mechanisms underlying chemical reactions on catalyst surfaces, because most of the time they can only observe the products or some intermediates,” Chukwu said. “As a computational chemist, I fundamentally understand the mechanisms behind these chemical reactions on catalyst surfaces, so we can design a catalyst system to get a certain product.”

Chukwu conceptualizes his team at Intel as “gatekeepers.” They are responsible for verifying the design of products in the final stages before they are manufactured.  

“I write software for physical design verification of chips or microprocessors before they go to the foundry, mostly making sure that spaces between wires or the geometry in the design matches the design specifications before manufacturing,” Chukwu said.

Chukwu says a combination of transferable and technical skills he honed at Oregon State — problem-solving, critical thinking, project management, and good old Beaver grit — prepared him to excel at Intel. His proficiency with the Linux operating system and the programming skills he developed as a doctoral student writing scripts in Python and C++ have benefited him. He specifically recalls a VLSI system design course with Houssam Abbas, assistant professor of electrical and computer engineering.

“That class gave me the confidence that I can work in a place where I can design chips or verify chips using computer-aided designs,” he said.

As future College of Engineering graduates prepare to join Chukwu at Intel, he recommends they continuously strive to improve their programming skills and take courses to boost proficiency in the use of CAD tools for chip design. This will increase their employability, he says, reflecting on his own experiences in the college:

“They offered me all the opportunities that allow me to do what I’m supposed to do here.”

Feb. 7, 2022
Subscribe to undergraduate