FY22 Research Funding Highlights

Nordica MacCarty sitting in front of a furnace.

The College of Engineering at Oregon State University is a proven leader in research, expanding knowledge and creating new engineering solutions in fields such as artificial intelligence, robotics, advanced manufacturing, clean water, materials science, sustainable energy, computing, resilient infrastructure, and health care.

In the 2021-2022 fiscal year, the College of Engineering notched its highest-ever total in research funding, with $75.8 million in awards — an increase of more than 17% over the previous record of $64.6 million, set the year before. With 321 new and continuing awards from 128 agencies (13 of them awarding $1 million or more), 140 faculty members were chosen as lead principal investigators.

Among the notable new sponsored projects:

Geoff Hollinger, associate professor of mechanical engineering and robotics, is leading a large team of researchers to develop a multi-arm robotics platform capable of performing complex manipulation tasks, such as cleaning the hulls of boats and performing routine maintenance of piers in challenging, low-visibility environments. The team, funded by a $6 million Office of Naval Research grant, will develop algorithms for coordination of the semiautonomous arms, build reactive sensor systems to provide tactile feedback, and create decision-support modules to provide easier control by human operators.

Nordica MacCarty, associate professor of mechanical engineering and the Richard and Gretchen Evans Scholar in Humanitarian Engineering, is working to reduce harmful emissions from wood- burning stoves, a primary source of heat in Native American communities and in low-resource areas in the United States. MacCarty will work with other Oregon State researchers, including Chris Hagen, professor of energy systems engineering and interim director of research at OSU- Cascades, and David Blunck, associate professor of mechanical engineering, in collaboration with tribal and industry partners to develop a firebox retrofit that uses turbulent jets of air to improve combustion efficiency, even under suboptimal conditions. Funding for the project comes from a $2.5 million grant from the Department of Energy.

Haori Yang, associate professor of nuclear science and engineering, is developing sensors to monitor nuclear waste from within storage vessels. With the storage of nuclear waste at Yucca Mountain on hold, U.S. nuclear power plants have resorted to storing waste on-site in dry storage casks. Ensuring the integrity of these canisters is critical. The Department of Energy has awarded Yang $640,000 to design externally powered sensors that can be placed inside the canisters and read from the outside. Such sensors would allow the monitoring of internal conditions difficult to assess with external sensors alone.

The National Science Foundation awarded Andre Barbosa, associate professor of structural engineering, $530,000 to develop a building-design paradigm to improve earthquake resilience while integrating sustainable building practices. The new paradigm will be applied to the design of mass timber structures.

With $500,000 in funding from the Department of Energy, Goran Jovanovic, professor of chemical engineering, is developing a microchannel device for membrane-less recovery of lithium from unconventional sources, such as byproducts of shale gas extraction. Lithium is a critical element for advanced energy storage systems.

Matthew Johnston, associate professor of electrical and computer engineering, is creating a wearable device to assess levels of anti-epileptic medication, the dosage of which is notoriously difficult to manage. The device sits in the mouth like an orthodontic retainer and monitors saliva in real time. The project is funded by a $205,000 grant from the National Institutes of Health.

Sept. 1, 2022

Reaching new heights: Pioneering female engineer left a space-age legacy

Black and white image of engineers

Growing up, Elaine Gething Davis, ’49, would hear an airplane soaring above her family’s coastal Oregon farm and rush outside with everyone else to watch it. Later, living near a military base during World War II, she was amazed by the variety of airborne machines leaping into the sky. After the war, her father bought a surplus airplane and gave the whole family flying lessons. Thus began a lifelong fascination with things that fly.

When she arrived at Oregon State College in 1945, she was the sole woman in her mechanical engineering class.

“I can recall the day as a freshman that I went to orientation. I could hear the rumble-rumble-rumble of a lot of people talking all the way down the hall, coming from a big auditorium,” she said in a 2017 interview for Boeing’s oral history archive. “When I stepped up to the door, all of a sudden, everybody quit talking.”

Elaine Davis was photographed
for a student engineering publication
in an Oregon State test laboratory.

She was one of six women among the undergraduate engineering students on campus. Before them, only three female students had ventured into engineering at Oregon State.

Her male classmates taunted her that she was “just here to get married.” She told an Oregon State Technical Record reporter that she was in engineering for a career and was not considering marriage.

“I simply would not give up, as hard as it was,” she said in the oral history. “I figured, my parents are sacrificing to send me to school. I couldn’t disappoint them.”

Many older students — men returning to Oregon State after the war — were supportive and kind. She had the support of her professors as well, especially Ben Ruffner, an aeronautical pioneer who served as a mentor to her in college and would later prove vital in her career. Eventually, even the scoffers came to treat her with respect. By her junior year, she’d zeroed in on the aeronautical option within her mechanical engineering major and was thriving in her classes.

She graduated with top honors, was quickly hired by Boeing, and moved to Seattle, renting a room at a residential hotel for women. She couldn’t wait to put her engineering training to use. But Boeing had relegated her to a clerk position. She spent her days entering data alongside other women. It was tedious, but she kept her head down and gave it her all.

One day, about a year after she’d been hired, Ruffner visited the offices to do some consulting for Boeing. After saying hello to Davis at her clerk’s desk, he marched straight to the head of the company’s human resources department. He told them he wouldn’t work with Boeing unless the company put Davis in a position worthy of her skills.

Almost immediately, Davis was reclassified as an aerodynamicist and became one of the first female space engineers at Boeing. She helped design a new wind tunnel, mapped out launches and worked on putting machines into orbit.

After hours, Davis loved to cut loose. Every Wednesday, Friday, and Saturday, she’d go with her roommate to dance the night away across Seattle. That’s how she met her husband, Phil.

“He was an electronic engineer, and we had a lot of the same interests,” she said.

She wasn’t allowed to talk about her work, even with her husband. The Cold War was ramping up, and she was doing classified work in partnership with the military. She started working on SRAMs, short range attack missiles, that could deliver nuclear warheads using a computer program to simulate their launch.

“It was scary,” she said. “I had quite a few nights of nightmares. I personally don’t believe war solves anything, but unfortunately in this world, you have to make sure you’ve got your defenses, because otherwise you’re vulnerable.”

After retiring in 1992, Davis sailed the San Juan Islands with Phil and kept dancing into her 80s. She died in 2018 at age 90.

Having grown up poor, she understood the importance of scholarships, and planned her legacy accordingly. She created a scholarship at Oregon State to support those in need, “of all races, genders and anything else,” including students of all majors. The first Elaine Gething Davis Scholarship was awarded in 2020.

April 27, 2022

Oregon State Engineering students, alum earn NSF fellowships

Portraits of Ethan Copple, David Evitt, and Melanie Huynh.

Two engineering graduate students at Oregon State University and one recent alum have been selected as fellows in the National Science Foundation Graduate Research Fellowship Program.

The five-year fellowship includes three years of financial support, including an annual stipend of $34,000 and a cost-of-education allowance of $12,000 to the institution. The program recognizes and supports outstanding students in NSF-supported science, technology, engineering, and mathematics disciplines who are pursuing research-based master’s and doctoral degrees. Only 10% of applicants receive fellowships.

Melanie Huynh, B.S. bioengineering ’21, will begin pursuing her doctorate in chemical engineering in the fall at the University of California, Berkeley. Working extensively with her mentor Cory Simon, assistant professor of chemical engineering, she has co-published three papers, including one as first author, on metal-organic frameworks for gas storage and separation. Huynh envisions using MOFs to deliver insulin to diabetics orally, like a vitamin, as an alternative to injections.

“Diabetes affects nearly 35 million Americans, with treatment costing over $9,500 in medical expenses per patient annually,” Huynh explained. “Daily insulin injection remains the most common treatment method, which many find painful and inconvenient. Drug-delivery MOFs may solve this.”

Huynh aims to use molecular simulations coupled with supervised machine learning techniques to create an efficient model that predicts insulin selectivity in biocompatible MOFs. The results will guide the design of successful insulin-storing materials, cutting down on time and cost.

Beyond contributing to research in chemical engineering and computer science, Huynh seeks to expand opportunities in STEM for students from minority communities, attributing her own undergraduate success to encouragement from mentors and networking with College of Engineering students and professionals.

“The NSF funding will help me further my career as an academic and allow me to provide exciting STEM opportunities to traditionally underrepresented communities,” she said.

Ethan Copple is pursuing dual master’s degrees, in industrial systems engineering and applied anthropology. In 2018, he researched health care access in Guatemala, blending systems engineering tools with ethnographic insights to discover hidden, yet crucial, complexities. This experience propelled him to seek NSF funding to support his career goal of systems consulting to identify and solve problems in health care and beyond in international development contexts. Copple says his motivation also stems from the Catholic social principle of aiding the poor and vulnerable, and from his father’s career as an engineer in the nonprofit sector.

“I’ve always been interested in humanitarian applications of systems engineering,” Copple explained. “One of my undergraduate mentors, Dr. Jessica Heier Stamm, has done much work with humanitarian and public health logistics systems, showing me how my technical skills could be applied outside of industry.”

Now that he has received NSF funding, Copple is considering his long-term options.

“The NSF award has reoriented a number of my future plans. I’m evaluating Ph.D. opportunities and looking at a few different future visions with my advisors to see what paths and timelines make most sense,” Copple said. 

David Evitt will soon earn his master’s degree in mechanical engineering, advised by Nordica MacCarty, associate professor of mechanical engineering. He will remain at Oregon State for his doctorate, starting in the fall with advisors MacCarty and David Blunck, associate professor of mechanical engineering. Evitt hopes to bridge “cutting-edge combustion science and practical implementation” by developing cleaner biomass-fueled cookstoves. Biomass is the primary energy source for an estimated 3 billion people around the world, concentrated mostly in rural areas in low- and middle-income countries.

“Affordable, high-performance appliances delivering robust emissions reductions are needed for biomass to take on an expanded role as a low-carbon fuel in the U.S. and in resource-constrained settings around the world,” Evitt said.

Evitt’s interest in humanitarian engineering started when he worked for a nonprofit organization in Guatemala following his undergraduate education, aiding rural families with technology solutions. Later, he co-founded a clean cookstove manufacturing business and helped finalize the Jet-Flame design at Aprovecho Research Center, where he has worked for three years. His NSF funding supports his ongoing mission to help build basic infrastructure for a sustainable world.

“My Ph.D. research will apply advanced combustion diagnostics, exploring how injected turbulent air jets interact with wood logs to influence the combustion process and emissions formation,” Evitt explained. “Assuring super-clean combustion with fuel of varying properties over different operating conditions is an exciting engineering challenge that can benefit many.”

Nordica MacCarty, who works with both Copple and Evitt, both of whom are Evans Fellows, knows their research fellowships will benefit society through engineering.

“The fact that two graduate students in Oregon State’s small humanitarian engineering program are NSF Fellows speaks to the caliber and commitment of the students we have been able to attract, as well as the relevance of engineering for social good in the eyes of NSF,” MacCarty said. “These students bring their rich experience and interdisciplinary approach to work on problems like burning wood more cleanly so that it remains a viable, affordable, and sustainable fuel; and applying a systems approach through a social science lens to bring health care access to underserved populations.”

April 25, 2022

Yue Cao earns NSF CAREER Award

Three engineers working on machine

Yue Cao, assistant professor of electrical and computer engineering in the Energy Systems research group, has received a Faculty Early Career Development (CAREER) Award from the National Science Foundation. The award includes a grant of nearly $500,000 over five years.

Traditional energy storage systems encompass what Cao calls “real” storage, such as batteries, supercapacitors, and fuel cells. Cao’s research aims to also incorporate currently overlooked “virtual” resources, such as HVAC systems or water heaters.

“I call those systems ‘virtual,’ because storing energy is not their primary purpose, but they consume electricity and are tied to the grid or other energy resources,” Cao said.

The purpose of Cao’s research will be to create a universal equivalent circuit for multiple energy storage systems that are controlled by connected power electronics. Cao will then develop a design approach to optimally size the hybrid energy storage systems and increase their life and reliability. By dynamically regulating virtual energy mass, this new approach aims to modulate energy usage from the grid.

“For example, if I have rooftop solar panels on my house, and it’s a sunny day and the air conditioner is on, and in the next minute a cloud blocks the sun, solar power will be reduced,” Cao said. “Current systems would use power from the grid to keep the air conditioner running. With an integrated energy system, however, the power used by the air conditioner, or the virtual resource, could be adjusted temporarily to match the reduced power of the solar panels, without my noticing a difference in temperature.”

Cao is already working on research projects that involve energy storage problems including fast charging stations for heavy-duty trucks on rural highways, electrification of locomotives, and wave energy.

March 21, 2022

Robots to the rescue

Oregon State joins forces with Carnegie Mellon to tackle DARPA Subterranean Challenge

The rescuers search for survivors in the darkness of a vast labyrinth, deep below the surface. They squeeze through tight spaces, navigate blind turns, scramble over obstacles, and struggle to avoid innumerable traps laid for them. One wrong turn could spell disaster. Communication is limited. And time is running out.

The “survivors” in this case are only mannequins, scattered throughout a section of the Louisville Mega Cavern, a former limestone mine that stretches downward and outward beneath 100 acres of Louisville, Kentucky. The rescuers are a band of semiautonomous robots developed by Team Explorer, a group
of graduate students, postdoctoral scholars, and faculty researchers from Oregon State University and Carnegie Mellon University.

They’ve come here, for three days in late September, to compete against other robot-human teams in the third and final round of the DARPA Subterranean Challenge, sponsored by the Defense Advanced Research Projects Agency. At stake is a prize pool totaling $5 million, with the largest share going to the team that locates the greatest number of mannequins and other hidden artifacts — 40 in all, ranging in size from a cellphone to a backpack — in a 60-minute run.

The SubT Challenge seeks “to better equip warfighters and first responders to explore uncharted underground environments that are too dangerous, dark, or deep to risk human lives.” Over a stretch of nearly four years, the competition has engaged multidisciplinary teams from around the world to devise creative solutions to map subsurface networks, on the fly and in unpredictable conditions. It’s the kind of challenge that, by design, strains at the limits of existing hardware and software capabilities — in terms of autonomy, networking, perception, and mobility.

Members of Team Explorer rally behind their banner at the final round of competition, held in September in Louisville

Members of Team Explorer rally behind their banner at the final round of competition, held in September in Louisville.

Geoff Hollinger, associate professor of mechanical engineering and robotics at Oregon State, earned his doctorate from Carnegie Mellon in 2010 and collaborated with the CMU Robotics Institute on an autonomous tunnel-mapping project from 2015 to 2017. So, when the call for proposals came out for the SubT Challenge in early 2018, CMU tapped Hollinger to join them in putting together a dream team. Explorer’s proposal was one of only seven selected by DARPA to receive phased funding of $1.5 million per year, for up to three years of competition.

Rather than use off-the-shelf hardware, Explorer assembled a tight combo of rugged, tractorlike robots and collision-proof drones built from scratch by CMU engineers. The Oregon State contingent led development of the multirobot coordination algorithms that determine where the team should look for artifacts, while also making major contributions to the object-recognition system and user interface.

“There have been many technical challenges involved in getting the robots to successfully coordinate without redundancy and achieving reasonable object recognition with the perception systems, including camera, laser, and gas sensors,” Hollinger said. “The biggest challenge has been integrating all of the systems on our unique team of robots.”

Explorer comes into this final round strong, having proven
a worthy contender in two preliminary trials. The team came in first place in the Tunnel Circuit in the fall of 2019 and second in the Urban Circuit in early 2020. A planned third preliminary round, the Cave Circuit, was scrapped because of travel limitations imposed by the COVID-19 pandemic. The Mega Cavern event includes challenge elements from all three subdomains.

“It was especially challenging to develop computationally efficient approaches that could run in real time onboard the robots as they traversed these diverse underground environments,” said Robert Debortoli, a doctoral student in Hollinger’s group.

Bereft of GPS and cellular connectivity, the robots must depend solely on their own systems to coordinate movements and relay information. Only one human teammate is allowed to provide direct supervision during the competition. Adding to the difficulty, the robots are going into the Mega Cavern blind, with no trial runs and no maps to guide them.

“The SubT Challenge requires the robots to perform well at the first attempt in an unseen environment,” said Graeme Best, a postdoctoral robotics scholar at Oregon State. “This has pushed the teams to develop solutions that work robustly across a wide range of environments.”

Explorer’s strategy involves having the wheeled robots scatter throughout the mazelike course, launching drones from their tails to extend the search farther, and distributing communication nodes along the way to create an ad hoc network. 

As the timer ticks down to zero, that approach appears to be working. Explorer has lived up to its name, surveying more of the course — an impressive 93% — than any other team, earning it the “Most Sectors Explored” award. However, the team fell a bit short in points scored, coming in fourth place overall. In the end, Explorer’s robots proved a bit too adept at identifying possible artifacts and overwhelmed their human teammate with reports, including some false positives.  

“We did a great job exploring the course, and ultimately we ended up sending back more artifacts than the operator could handle,” Hollinger said. “The operator ran out of time and wasn’t able to get to all of the ones that we saw.” Also participating on Team Explorer from Oregon State were master’s students Yu Hsuan (Chris) Lee and Emily Scheide, and recent graduate Manish Saroya, M.S. robotics ’21. Lee won a best paper award in May at the IEEE International Conference on Robotics and Automation for work performed during the competition.


March 21, 2022

Sensing opportunity

A picture of Sanjida Yeasmin working in a laboratory.

In a way, Sanjida Yeasmin is pursuing her PhD in electrical and computer engineering not just for herself, but for countless others as well.

“I’m trying to bring electronics to the medical field to save lives or make lives better. This always drives me,” she said.

Yeasmin’s current research centers on biosensors, analytical devices that noninvasively detect biomolecules and other chemicals in the body to measure aspects of health. Her interest in biosensors started five years ago when she was studying for her master’s degree at the Hong Kong University of Science and Technology.   

“I developed a sensor which can detect a biomarker in the human body related to heart attacks. When someone has a heart attack, the marker is released inside their body in the early stage, so we can know how they are affected,” Yeasmin explained.

After earning her master’s degree in 2017, Yeasmin, who is from Bangladesh, prepared for her next international move: joining the research staff at Nanyang Technological University in Singapore. There, she developed colorimetric paper strips that change color when exposed, in bodily fluids, to specific markers associated with lung cancer.

“My master’s thesis and my research experience in Singapore motivated me to pursue my main goal of bringing laboratory-based diagnostics to rapid onsite, at-home testing,” Yeasmin said.

For this undertaking, Yeasmin set her sights westward for Ph.D. programs. 

Although accepted by multiple universities, Yeasmin quickly gravitated to Oregon State. One reason is the Outstanding Scholars Program, which offers two-year stipends and professional development opportunities to adept computer science and electrical and computer engineering graduate students whose work will positively impact the future. From 2019-21, Yeasmin was one of 12 students in the inaugural Outstanding Scholars cohort.

Further, Yeasmin chose Oregon State because her research interests align with those of Larry Cheng, associate professor of electrical and computer engineering, who is now her project advisor. Together, they are developing two types of sensors; the first is an electrochemical sensor that detects cortisol, a hormone correlated to stress, in the body.

“We are making a wearable sensor which can be attached to your skin. When cortisol is released in your sweat, the sensor will detect it and give you a signal in your phone,” Yeasmin said.

This at-home diagnostic approach has several advantages. It saves time and promotes accessibility, because the test does not need to be sent to a lab, which could take weeks. It is also less expensive, because, unlike other commercial sensors, it does not require enzyme analysis.

“We are trying to make an enzyme mimetic material to replace the enzyme to reduce the cost,” Yeasmin said. “We want to make it robust, something which can be used at home simply, like pregnancy sticks.”

The second sensor Yeasmin and Cheng are developing involves light-emitting carbon dots, which could have applications in bioimaging, disease detection, hormone level analysis, and other aspects of human health.

“These are very small, nanometer-range particles, which can emit red, orange, green, blue — every color, really. We are working on that to use in biosensors and also for micro-LED displays,” Yeasmin said.

Most LED technology relies on quantum dots, but these nanoparticles present environmental hazards because they contain heavy metals, such as cadmium. The European Union banned cadmium and other harmful substances in its 2011 Restriction of Hazardous Substances directive for electronics. Cheng and Yeasmin have developed an alternative.

“The new material is primarily made of carbon — no metal. We are making an eco-friendly product with good light-emitting properties and a very high quantum yield,” Yeasmin said.  

Cheng and Yeasmin’s carbon dot project has received support, via the Accelerator Innovation and Development fund, from Oregon State’s Advantage Accelerator. The program funds innovative, tech-based projects, aiding researchers from conceptualization through commercialization. Its support perfectly reflects Yeasmin’s own desire to be an entrepreneur upon graduating. 

“We are doing something that can solve existing problems and have the potential to go to market immediately. That’s the thing that always drives me,” Yeasmin said. “Starting from material synthesis, device fabrication and sensing — everything is conducted in the Cheng research lab. We’re developing sensors that can rapidly and precisely assess health conditions, thereby reducing health risks and avoiding hospital visits. This is the beginning of a new adventure for me, and I’m looking forward to it.” 

March 18, 2022

Barbara Simpson earns NSF CAREER Award

A woman with a protection hat and glasses working on a project.

Barbara Simpson, assistant professor of structural engineering, has received a Faculty Early Career Development, or CAREER, award from the National Science Foundation. The award includes a grant of nearly $600,000 over five years. 

Simpson proposes to lay the algorithmic foundations for high-fidelity simulations of complex structural systems using graphics processing units, or GPUs. Her research could significantly advance the fundamental understanding of the risks posed by natural hazards to the built environment. For example, soil-structure interaction is critically important for how tall buildings respond to earthquakes, but the variable is often neglected in building design because of high computational costs and physical testing constraints. 

“We intend to harness the massive parallelism of GPUs to overcome computational bottlenecks in structural simulations, specifically real-time hybrid simulations,” Simpson said.  

In hybrid simulations — a powerful tool for analyzing structural systems — physical tests are combined with numerical models. They’re typically applied to systems that are too large or complex to undergo conventional physical testing alone. 

“We can already do some hybrid simulations in real time,” Simpson said, “but for very complicated problems, like soil-structure interaction, it’s just not feasible from a computational standpoint. If your numerical model is slow, it’s difficult to couple experimental and numerical components in real time.” 

That’s where GPUs come in. As their name suggests, GPUs were originally designed for graphics rendering. But their ability to simultaneously execute numerous discrete calculations has proven valuable for a growing number of applications, including high-speed simulations. 

Simpson will be using GPUs in Oregon State’s NVIDIA DGX-2 computing cluster, as well as GPUs in the Texas Advanced Computing Center at the University of Texas at Austin.

“By leveraging the computational power of GPUs,” Simpson said, “I want to reduce computational times from hours down to minutes and seconds and use this technology to support real-time hybrid models of very complex structural problems.”

March 7, 2022

Materials scientist spins sustainable products

Kenya Hazell working in the lab to develop polymer composites.

Since she began studying materials science as a graduate student at Oregon State University in 2015, Kenya Hazell, a GEM Fellow and recent environmental technology researcher and development intern at Corning, has sought to discover ways to sustainably create and apply polymer composites — unique materials with synergistic properties, formed by combining reinforcement materials with polymer matrices.

“Everything’s a polymer, even DNA,” Hazell said. “It’s hard to narrow down the field, because there are so many uses for composites. They’re in a ton of products you need for your everyday life, like your fridge, your desk, your car.”

Hazell was first turned on to the seemingly endless possibilities of polymer composites during a trio of internships — Garlock Sealing Technologies, UTC Aerospace Systems, and Clausthal University of Technology, in Germany — near the end of her time at the Rochester Institute of Technology, where she earned a bachelor’s degree in chemical engineering.

“After those internships, I decided I wanted to delve more into that realm and go to grad school,” Hazell said. “I chose Oregon State, because there are so many possibilities, in terms of research geared toward sustainable engineering.”

As a master’s student at Oregon State, Hazell worked on projects involving wood composites and plant fibers, including an exploration of how hemp fibers can be modified to yield greater thermal sustainability during the manufacturing process.

“Can I make a more sustainable product? Can the manufacturing process be more sustainable? And an end goal is: How can we recycle this?” Hazell wondered.

Kenya Hazell

Now, Hazell’s doctoral research, which she conducts in the lab of Vincent Remcho, professor of chemistry, focuses on electrospinning as a way to produce nanoscale fibers for thermal applications. She primarily works with structural composites similar to those used in exteriors of products such as cars and aircraft.

Complementing Hazell’s research are her recent internships with Georgia-Pacific Chemicals in 2020 and with Corning in the summer of 2021. For her research and development role at Georgia-Pacific, which she began shortly before the pandemic, she helped design experiments to study the properties of resin as a composite material and assisted in studies of wood composites. Beyond her own research, Hazell liked that chemists and chemical engineers working in different labs were eager to tell her about their projects.

“If I didn’t have anything to do, I just walked over to another lab, and if they weren’t too busy, they would tell me everything. I learned a lot about how an R&D lab works,” she said.

A year later, at Corning’s headquarters in New York, Hazell performed research and development work in the company’s environmental technology unit, where she examined methods to characterize the real-life properties of a gel material. 

“That gave me a view of what a company invested more heavily in their research sector looks like,” Hazell said.

Hazell’s internship at Corning was connected to her GEM Fellowship, through which Oregon State and Corning provide funding for her Ph.D. studies. In addition to financial support, GEM offers professional networking, conferences, and career development, and many Fellows go on to secure jobs with their internship organizations. 

As for her postdoctoral future, Hazell looks forward to making an impact on the materials science industry’s sustainability practices.

“Not everyone wants to be forced to choose a material that’s not environmentally friendly,” Hazell said. “So, how can we make a product that’s competitive to this nonrenewable product? How can we provide more ways for people to make environmentally conscious decisions? I’m creating new options for people.”

Feb. 11, 2022

More from less

Soumya Bose standing next to his research presentation board.

At Intel Labs in Hillsboro, research scientist Soumya Bose, Ph.D. electrical and computer engineering ’19, develops circuits to speed up optical data communications while reducing the amount of power they need. 

Optical links are already capable of quickly moving enormous quantities of data within and between computer networks. But still faster links will be needed to handle the world’s incessant demand to move and process data. Higher speeds, though, come at the cost of greater energy consumption, which quickly adds up in the hundreds of giant data centers around the world. 

“The high-speed, power-efficient optical links of the future will enable higher data transfer and computing capacities per unit of energy,” Bose said. “Among other things, this will enable advanced data training and analysis capabilities in applications such as machine learning and artificial intelligence.” 

For example, new machine learning methods designed to process large datasets of neural recordings could revolutionize neuroscience by providing new insights into the workings of the human brain.

High-speed optical data links are widely used for transmitting data between servers. But within servers themselves, data transmission is predominantly done electrically. At higher data rates, electrical links are less energy-efficient and more prone to errors. 

“My work, and our research at Intel Labs, focuses on bringing optical communication closer to the processor itself,” Bose said. He added that converting to optical communications at the level of computer circuit boards and chips will result in faster, more accurate data transfers between core processors and peripheral storage devices. 

Bose’s doctoral work included building energy-efficient circuits that enable portable biomedical sensing devices to operate on minuscule amounts of power generated by converting body heat into electricity. 

“The voltage from the transducers ranges from tens of millivolts to a few hundred millivolts, which is not enough to power an integrated circuit,” Bose said. “The fundamental challenge was to run semiconductors at a very low input voltage.” Bose’s solution was a new circuit architecture that started operating with only 50 millivolts. It then amplified the voltage enough to sustain long-term operation. 

Bose is the lead inventor on a patent for technology related to ultra-low-voltage circuits, as well as on a patent application for a wearable, batteryless heartbeat monitor designed to continuously gather data about a patient’s heart health. These patents also include College of Engineering faculty Matthew Johnston, associate professor of electrical and computer engineering, and Tejasvi Anand, assistant professor of electrical and computer engineering. 

According to Bose, Oregon State University was an excellent training ground. 

“Doing my doctoral work at the College of Engineering really helped me get to where I am now,” Bose said. “It’s a vibrant program where I had an opportunity to meet leaders in the field of circuit design, and I was able to work alongside great researchers on high-impact work.” 


Feb. 9, 2022
Associated Researcher

Intel engineer adapts computational chemistry skills learned at Oregon State

A picture of Kingsley Chukwu looking at a piece of machinery.

After obtaining his Ph.D. from Oregon State University’s College of Engineering in 2021, Kingsley Chukwu has transitioned to a successful career as an electronic design automation tools software engineer at Intel. However, Chukwu is not your typical software engineer; while he has a minor in computer science, his degree is in chemical engineering with a focus on computational chemistry.

“I use computer quantum software to understand how atoms and molecules will behave on catalyst surfaces,” Chukwu said. 

Chukwu’s doctoral research, a National Science Foundation-funded project, was conducted in the lab of Líney Árnadóttir, associate professor of chemical engineering. He implemented computational methods to better grasp how water and other solvents affect the selectivity and rate of acetic acid-based chemical reactions on palladium and platinum surfaces.

Notably, Intel is famous for manufacturing semiconductors, not catalysts. Even though Chukwu’s research was not directly related, the company understood that his training and perspective as a chemical engineer would be invaluable. 

“It is challenging for experimentalists to understand the mechanisms underlying chemical reactions on catalyst surfaces, because most of the time they can only observe the products or some intermediates,” Chukwu said. “As a computational chemist, I fundamentally understand the mechanisms behind these chemical reactions on catalyst surfaces, so we can design a catalyst system to get a certain product.”

Chukwu conceptualizes his team at Intel as “gatekeepers.” They are responsible for verifying the design of products in the final stages before they are manufactured.  

“I write software for physical design verification of chips or microprocessors before they go to the foundry, mostly making sure that spaces between wires or the geometry in the design matches the design specifications before manufacturing,” Chukwu said.

Chukwu says a combination of transferable and technical skills he honed at Oregon State — problem-solving, critical thinking, project management, and good old Beaver grit — prepared him to excel at Intel. His proficiency with the Linux operating system and the programming skills he developed as a doctoral student writing scripts in Python and C++ have benefited him. He specifically recalls a VLSI system design course with Houssam Abbas, assistant professor of electrical and computer engineering.

“That class gave me the confidence that I can work in a place where I can design chips or verify chips using computer-aided designs,” he said.

As future College of Engineering graduates prepare to join Chukwu at Intel, he recommends they continuously strive to improve their programming skills and take courses to boost proficiency in the use of CAD tools for chip design. This will increase their employability, he says, reflecting on his own experiences in the college:

“They offered me all the opportunities that allow me to do what I’m supposed to do here.”

Feb. 7, 2022
Subscribe to graduate