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Should Our Expectations  

Change with Time 
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Today We Ask More from Concrete 

• Today we ask for more 

• TRB’s 2013 Theme is 

Smarter, Better, Faster 

• But We Also Want: 

– More Economic to Build 

– Safer for Travelers 

– Longer Lasting 

– More Sustainable 

– Economic to Maintain 

1925 
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Changes On The Horizon 

• Historically 

– Tested Materials 

in harsh conditions 

and given a “AB 

type of rating” 

• Moving Forward  

– We will use material 

properties and  

exposure conditions 

to predict performance 
http://www.colledun.com/gallery/albums/TowPlow/TowPlow.jpg 
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Recipe vs Performance 

Specifications 

• Recipe  

– Developed over time  

– Items added to address  

specific concerns 

– Responsibility/risk borne by the agency  

– Agencies have workforce reduction – compliance? 

• Performance Specifications 

– Encourage innovation, new materials 

– How do we evaluate performance without 

waiting 50 years – Simulations have value 
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Distress Models  

(Example - Corrosion Initiation) 
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How Long Does for Corrosion to 

Start 

• The chloride will migrate to the bar over time 

• How long does it take to reach a critical level 

• Depends on the quality of the concrete and 

the depth of the reinforcement 

Time 

Chloride 

At the Bar 

Critical Value 
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What is service life and  

how is it predicted? 

• AASHTO LRFD Bridge Design Specifications 

define service life as the period of time that 

the bridge is expected to be in operation.  

• Design life - period of  

time on which the  

statistical derivation of  

transient loads (75 year)  

• Silent on the extent of the  

expected service life. 

(Relation to Durability) 
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Sources of Degradation 

• Major causes of degradation are  

high transient loads and severe  

environmental conditions.  

• Environmental degradation: carbonation, 

sulfate attack, alkali-silica reaction, freeze-

thaw, chloride ingress, and chemical attack.  

• Water and ionic species invade the concrete's 

pore structure and initiate physical/chemical 

reactions causing expansive by-products.  



 

 

 

 

 

 

February 27th, 2015 Slides Prepared by W. Jason Weiss, wjweiss@purdue.edu © Slide 10 of 34 

Simply Said 

• Higher D causes ions to move faster 

– High w/c (high porosity) 

– High paste content 

• Lower D causes ions to move slower 

– Lower w/c 

– Supplementary SCM 

• The Diffusion Coefficient is  

Difficult, Time Consuming  

and Costly to Obtain 
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Tests – Entering Vernacular in 

Practice 
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Can we Look At Alternative Tests 

• For a wide variety of materials  

have a relationship between  

voltage and current that are  

directly proportional to each  

other 

 

• Proportionality constant 

• Named after Georg Ohm (1827) 

• Actually Discovered by Cavendish (1731-1810) 

• “A professor who preached such heresies was 

unworthy to teach science” 
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Resistance 

• Is resistance a material property? 

Voltage 

Current 

R 

L 

A V=IR 
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Resistivity  

Independent of Geometry  

• Copper 1.68 x 10-8 ohm m 

• Carbon  3 (60) x 10-5 ohm m 

• Glass 1 (10000) x 109 ohm m 
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Diffusion Coefficient  

• D is Related to Electrical Properties of 

Concrete Using the Nernst-Einstein Eqn. 

 

 

 

 
 

• Challenges how does D change over time, 

what if the solution differs, etc 

• Opportunities for QC/QA 
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Review of the Impact of Geometry 

• Uniaxial, surface, 

embedded, and 

RCPT electrical 

measurements 

all yield results 

that can be 

directly 

compared if  

done properly 

• Proper reporting 

is essential 
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A thought as we begin 

• Many people are asking for a resistivity 

value that can be used to insure ‘durability’ 
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A thought as we begin 

• Many people are asking for a resistivity 

value that can be used to insure ‘durability’ 

• Can relate resistivity to RCPT 

(known value) - 1st principles 
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• Many people are asking for a resistivity 

value that can be used to insure ‘durability’ 

• Can relate resistivity to RCPT 

(known value) - 1st principles 
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ASTM C1202 
Classification

(1)
 

Charge Passed 
(Coulombs)

(1)
 

Resistivity 
(kOhm·cm)

(2)
 

High >4,000 < 5.2 

Moderate 2,000 - 4,000 5.2 - 10.4 

Low 1,000 - 2,000 10.4 - 20.8 

Very Low 100 - 1,000 20.8 - 207 

Negligible < 100 > 207 

(1) from ASTM C1202-12 

(2) calculated using first principles  

 

A thought as we begin 

• Many people are asking for a resistivity 

value that can be used to insure ‘durability’ 

• Can relate resistivity to RCPT 

(known value) - 1st principles 

 

 

 

• This results in a table  

• However is this really  
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Archie’s Law and  

The Formation Factor 

• Empirical relationship that is the  

ratio of the bulk resistivity () of  

a saturated medium and the  

fluid (O) that is in the medium 

 

 

 

• This makes the assumption that it is only 

the fluid that is conductive (Weiss et al.) 

• There are solutions for other cases; but 
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What is the Formation Factor  

Really Describing  

Gel Pores (2-5 nm) – small, independent  

of w/c, increase in volume with hydration 

Capillary Pores (5nm-10 mm) – large  

pores, very dependent on w/c, decrease  

in volume with hydration, what we control 

Entrained/Entrapped Air – Largest  

pores from mixing, stabilizing bubbles 

 

Formation Factor is all about 

Total Porosity (f) and Tortuosity (b) 

 

What Do We Need to Remember ? 

Transport mainly in large pores 

Capillary pores are large/connected 

W/C, SCM and Curing 
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ASTM C1202 
Classification

(1)
 

Charge Passed 
(Coulombs)

(1)
 

Resistivity 
(kOhm·cm)

(2)
 

Formation 
Factor 

High >4,000 < 5.2 520 ? 

Moderate 2,000 - 4,000 5.2 - 10.4 520-1040 ? 

Low 1,000 - 2,000 10.4 - 20.8 1040-2080 ? 

Very Low 100 - 1,000 20.8 - 207 2080-20700 ? 

Negligible < 100 > 207 20700 ? 

(1) from ASTM C1202-12 

(2) calculated using first principles  

 

 

Maybe We Should Look at the 

Formation Factor  

• Maybe it makes  

sense to look at the  

formation factor  

instead for  

specifications 

• These numbers are just place holders 

however they illustrate how to get to the 

most fundamental value 

• With this one can to go in two directions 

–1) This relates to service life 

–2) This enables various constituents 
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2) Enables Various Constituents 

http://ciks.cbt.nist.gov/poresolncalc.html 

• Conduction requires an electrolyte 

• Free ions making solution 

electrically conductive  

• Na+, K+, Ca2+, Mg2+, Cl-, HPO4
2-, HCO3 

• Heavily influenced by SCM  

 

Three approaches to obtain O (for const.) 

 1) Extraction – Doable  

 2) Sensor –Promising (Rajabipour et al) 

 3) Calculation 
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Lets Take a Second to Review  

• Geometry correction is key () 

• Many want a table for RCPT vs   

• Easy to do but is it the best thing 

 

A Possible Thought 

F is the way to go for a specification 

 is the way to go for QC/QA 

Requires O to be stated using a 

procedure in specification (much easier) 

or determined experimentally (harder) 
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Testing Age [d] 
Within-

laboratory 
Multi-laboratory 

Uniaxial 

Resistivity 
12 % 37 % 

Surface 

Resistivity 
13 % 35 % 

 

Nothing Left to Worry About Right ? 

• We may think that resistivity 

is fast and easy so what  

can go wrong with it 

• We have been involved in two ‘round 

robin studies’ 

• National study  

samples were  

prepared and  

sent to different labs 

• State study where we prepared all the 

samples, trained and distributed samples 
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• Machine/Operator/Material 

– Traditionally estimated  

in a single lab as 

– 3-4% (Purdue, LaDOT) 

• Production 
– Important when used  

as a QC/QA tool 

– Dependent on  

contractor quality 

– 10% is a typical value 

• Data shown is from a central mix plant with one 

mixture run frequently, low variation 

 

Components of Variation 

Spragg et al. 2012 
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Components of Variation  

Attention to Curing is Critical  

• State Study  

• Within-lab: 4.36% 

– Machine/Operator/ 

Material 

• Multi-lab: 13.22% 

– Machine/Operator/ 

Material and curing 

– Believed Curing 

Variation: 12.5% 

• State Variation 

Shown (top young, 

bottom old samples) 

 

 

Spragg et al. 2013 
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 Testing Temperature 

• Activation Energy of  

Conduction (test temp) 
     Rajabipour et al. 2007, Sant et al.2007 

 

 

• In the past we noticed  

differences between 

• Varied the solutions 

– Pore Solution: 9-12 kJ/mol 

– Bulk Sample: 20-25 kJ/mol 
Spragg et al. 2013 
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Accelerating Curing Time 

• Many materials we test 

take a long time to show 

benefits (91 d) 

• We frequently want to 

speed this time up 

• VTRC/NRMCA method 

• Lime water 7d, 23C 

followed by 21d, 38C 

• T equivalent 56d  

• Application on the right 

shows difference ~25% Bu  et al. 2014 
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Accelerated Curing Effects 

Transport testing and service life prediction 

usually performed on specimens of later age 

(91 days). 

Same maturity (DOH) could be achieved 

with shorter time using a higher curing 

temperature. 

1 1
( )a

r

E

R T T
et e t

 



91 

days 

23 

days 

Ea = 37 

kJ/mol 

Bu et al. 2014 

Sample Geometry 

Is Resistivity  

the Goal ? 

Exposure 

Formation Factor 

Porosity/Tortuosity 

Relate to SLM 

Pore Solution 

Variation Source 

Curing 

Saturation 

Temperature 

Leaching 

Carbonation 

Absolute Values 

Accelerated Curing 

Summary  



 

 

 

 

 

 

February 27th, 2015 Slides Prepared by W. Jason Weiss, wjweiss@purdue.edu © Slide 34 of 34 

Summary  

• Geometry correction is key () 

• Many want a table for RCPT vs   

• Formation factor is the way to go (IMHO) 

• Electrical Properties are dependent on 

– Degree of Saturation  

– Test Temperature 

– Ionic Leaching 

• Accelerated curing possible but expansion 

of water needs to be considered 

• Training necessary - sensitive in ways that 

slump and compressive strength are not  
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