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Should Our Expectations
Change with Time

The Telephone Doors

of the Nation
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Today We Ask More from Concrete

1925

 Today we ask for more

 TRB's 2013 Theme is
Smarter, Better, Faster

* But We Also Want:
— More Economic to Build
— Safer for Travelers
— Longer Lasting
— More Sustainable
— Economic to Maintain
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 Historically

— Tested Materials
In harsh conditions
and given a “AB
type of rating”

* Moving Forward

— We will use material
properties and
exposure conditions
to predict performance

http://www.colledun.com/gallery/albums/TowPlow/TowPlow.jpg
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Recipe vs Performance
Specifications

* Recipe
— Developed over time

— Items added to address
specific concerns

— Responsibllity/risk borne by the agency'
— Agencies have workforce reduction — compliance?

Performance Specifications

— Encourage innovation, new materials

— How do we evaluate performance without pEAS=A
waiting 50 years — Simulations have value [ i&8&

February 27th, 2015 Slides Prepared by W. Jason Weiss, wjweiss@purdue.edu © Slide 5 of 34



Distress Models

(Example - Corrosion Initiation)

) cCorrosion
<) Initiation
X
o £ Accumulation Period| Corrosion
Q @© X¢ ° >
%D
— O Corrosion
c > '
8 = Product D'Z'gjgée
5SS Build-Up
o &
-
@)
>
Time (YearS) Tutti et al.
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How Long Does for Corrosion to
Start

* The chloride will migrate to the bar over time
 How long does it take to reach a critical level

* Depends on the guality of the concrete and
the depth of the reinforcement

Chloride Critical Value
At the Bar

Time
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What is service life and
how Is It predicted?

« AASHTO LRFD Bridge Design Specifications
define service life as the period of time that
the bridge Is expected to be In operation.

Out Of Order by Ben Lansing

* Design life - period of
time on which the
statistical derivation of
transient loads (75 year)

« Silent on the extent of the
expected service life.
(Relation to Durability)
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environmental conditions.

* Environmental degradation: carbonation,
sulfate attack, alkali-silica reaction, freeze-
thaw, chloride ingress, and chemical attack.

« Water and ionic species invade the concrete's
pore structure and initiate physical/chemical
reactions causing expansive by-products.
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Simply Said

* Higher D causes ions to move faster
—High w/c (high porosity)
—High paste content

* Lower D causes ions to movslower

—Lower w/c
— Supplementary SCM
 The Diffusion Coefficient is

Difficult, Time Consuming
and Costly to Obtain
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Tests — Entering Vernacular in
Practice

\
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Can we Look At Alternative Tests

* For a wide variety of materials
have a relationship between
voltage and current that are
directly proportional to each

other
V =IR

* Proportionality constant
 Named after Georg Ohm (1827)
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Resistance

L Voltage / ’ %

A
v

Current
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Resistivity
Independent of Geometry

« Copper 1.68 x 10-8ohm m
e Carbon 3 (60) x 10> ohm m
e Glass 1 (10000) x 10° ohm m
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Diffusion Coefficient

* D Is Related to Electrical Properties of
Concrete Using the Nernst-Einstein EqQn.

Osample D PFluid

OFluid lon pSample

lOTl D
OSample O Flwid PSam pFluld ion
D=0sampie * Constant

* Challenges how does D change over time,
what If the solution differs, etc

* Opportunities for QC/QA
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Review of the Impact of Geometry

Sample Geometry

« Uniaxial, surface,
embedded, and
RCPT electrical
measurements
all yield results
that can be
directly .
compared If

Concrete

done properly “Blecrodes. o
* Proper reporting Q= jidt
IS essential oh PK

Coating
To-Lead To+ Lead

February 27th, 2015 Slides Prepared by W. Jason Weiss, wjweiss@purdue.edu © Slide 16 of 34



A thought as we begin

Sample Geometry

N © \Many people are asking for a resistivity
S Resistivity _ o
the Goal ? value that can be used to insure ‘durability’

Exposure
Formation Factor
Porosity/Tortuosity

Relate to SLM
Pore Solution
Variation Source
Curing
Saturation
Temperature
Leaching
Carbonation
Absolute Values
Accelerated Curing

Summary
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A thought as we begin

Sample Geometry

N © Many people are asking fqr a resistivity_ |
the Goal ? value that can be used to insure ‘durability’

Exposure

Formation Factor ¢ Can relate reS|St|V|ty tO RCPT Q 6hV 1
Rl (known value) - 15 principles

Relate to SLM
Pore Solution
Variation Source
Curing
Saturation
Temperature
Leaching
Carbonation

Absolute Values

Accelerated Curing

Summary
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A thought as we begin

Sample Geometry

N © Many people are asking fqr a resistivity_ |
the Goal ? value that can be used to insure ‘durability’

Exposure

Formation Factor ¢ Can relate reS|St|V|ty tO RCPT Q GJPV 1

BT . = | ——dt
BRRAEEENE  (known value) - 15t principles S K P
Relate to SLM
Pore Solution ]
Variation Source 0= \L 1'[ — Eom 60V 6hr 60min 60s_ec —10.4 kO -cm
Curing K Q . . ZOOOAmpseC lhr  1min
Saturation rH°cm

Temperature
Leaching
Carbonation

Absolute Values

Accelerated Curing

Summary

February 27th, 2015 Slides Prepared by W. Jason Weiss, wjweiss@purdue.edu © Slide 19 of 34



A thought as we begin

Sample Geometry

N © Many people are asking fqr a resistivity_ |
the Goal ? value that can be used to insure ‘durability’

Exposure

Formation Factor ¢ Can relate reS|St|V|ty tO RCPT Q 6hV 1
Rl  (known value) - 15t principles S K P

Relate to SLM

Pore Solution

Variation Source GRS \L lt — 60V ohr 60min 60sec =10.4kQ-cm

Curing K Q 5Cm . ZOOOAmpseC lhr  1min

2
Saturation 75°cm
ASTI_VI_ C1_202( Y Charge ss(e)d Resistivitxz)
Ternperature . . Classification (Coulombs)® (kOhm-cm)
Leaching o ThIS reSUItS In a. table High >4,000 <52
C b i Moderate 2,000 - 4,000 52-104
arponation . .
) H Owever IS th IS real Iy Low 1,000 - 2,000 10.4 - 20.8
Absolute Values Very Low 100 - 1,000 20.8 - 207
n——ere  \What we want........
. . @ from ASTM C1202-12
SUIT]maI'y th I n k baC k to th e ccccccccccccccc ing first pri inciples Spl’agg et al 2010
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A thought as we begin

N © Many people are asking fqr a resistivity. |
the Goal ? value that can be used to insure ‘durability’

- Can relate resistivity to RCPT 0 TV 1

. = | ——dt
(known value) - 15 principles S K P
p=Y Lo — o phr 20MIN 00EC _ 16 4 kea- om
i Q 2000 Ampsec lhr Imin
r5°cm
Classification® C(girl?liniissigp (kFgr?:rS]Ficvniq%
* This results in a table
» However is this really
what we want........
think back to the gori el i Spragg et al. 2010
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Archie’s Law and
4 The Formation Factor

« Empirical relationship that is the
ratio of the bulk resistivity (p) of
a saturated medium and the
fluid (p,) that Is In the medium

Formation Factor

Solid ] ,O

* This makes the assumption that it is only
the fluid that is conductive (Weiss et al.)

"here are solutions for other cases: but
nis works most of the time
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What i1s the Formation Factor
Really Describing

Bl G| Pores (2-5 nm) — small, independent

'ihiegijglvi;y of w/c, increase in volume with hydration
Exposure Capillary Pores (5nm-10 um) — large
Formation Factor pores, very dependent on w/c, decrease

Porosity/Tortuosity in volume with hydration, what we control &

Seciyal —ntrained/Entrapped Air — Largest
Pore Solution pores from mixing, stabilizing bubbles

Variation Source

curing Formation Factor is all about
SEUEIIN Total Porosity (¢) and Tortuosity (B)
Temperature
CLe;‘Ch"t‘_g What Do We Need to Remember ?
eolie Valies Tran_sport mainly in large pores
fsm—rer Capillary pores are large/connected
Summary W/C, SCM and Curing
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Maybe We Should Look at the

Formation Factor

Sample Geometry b . k
s Resisivity Maybe It makes STMCIZR,  ChagePassed Moy, Formaior
the Goal ? sense to look at the — =
Exposu re - Moderate 2,000 - 4,000 5.2-104 520-1040 ?
. fo rm a.tl O n faCtO r Low 1,000 - 2,000 10.4 - 20.8 1040-2080 ?
Format|0n FaCtor . Very Low 100 - 1,000 20.8 - 207 2080-20700 ?
Porosity/Tortuosity N Ste ad fO I Negligible <100 > 207 20700 ?
Relate to SLM specifications DT e

Pore Solution

el © | hese numbers are just place holders
Curing however they illustrate how to get to the

BB  most fundamental value
Leaching * With this one can to go in two directions
Carbonation

Absolute Values —1) This relates to service life
Sl —2) This enables various constituents

Summary
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1) Direct Relation to Service Life

 Walther Nernst
(1864-1941)

Formation Factor ° German phyS|Ca|
chemist/physicist

* Won 1920 Nobel Prize

Relate to SLM

- ] E_ PBulk
| Table 1 — Diffusion coefficient of various -
species in free water
Species DF pSO In
- (10° m?/s)
OH 5.273 |
Na' 1.334
, K™ 1.957 D _D,u. 1 _D,u_pSOln
' SO, 1.065 i — Yi = Y
| % 4 F
| Ca’ 0.792 PBulk
('.'1_' 2.032

0.706 |
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2) Enables Various Constituents

Sample Geometry

« Conduction requires an electrolyte

Exposure ’ Free |OnS maklng SOIUtlon
Formation Factor eleCtrlca”y CondUCt|Ve

Porosity/Tortuosity |8 Na+, K+, Ca2+’ Mg2+, CI-, HPO 2-, HCO
4 3

Relate to SLM

LLEULVEN » Heavily influenced by SCM

Variation Source

Is Resistivity
the Goal ?

Curing

saturation Three approaches to obtain p, (for const.)

Temperature _
Leaching 1) EXtraCtIOn - DOab|e
Carbonation . . . .
eolie Valio 2) Sensor —Promising (Rajabipour et al)

Accelerated Curing 3) Calculation http://ciks.cbt.nist.gov/poresolncalc.html

Summary
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Lets Take a Second to Review

« Geometry correction is key (k)
 Many want a table for RCPT vs p

» Easy to do but is it the best thing
B ~ Possible Thought

F is the way to go for a specification
p IS the way to go for QC/QA

Requires pg to be stated using a
procedure in specification (much easier)
or determined experimentally (harder)
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Nothing Left to Worry About Right ?

- We may think that resistivity g
Is fast and easy so what 4
can go wrong with it

« \We have been involved in two ‘round
robin studies’

Variation Source ° N atl on aI Stu dy Testing Age [d] Ia\slc::irc‘)}y Multi-laboratory
Uniaxial
Sam p I eS We re Resistivity 12% 37%
Surface
prepared a‘nd Resistivity 13% 35%

sent to different labs

« State study where we prepared all the
samples, trained and distributed samples
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Components of Variation

Sample Geometry 5 2 2 2 2
Is Resistivity Ototal = |Omachine + Joperator + Omaterial + Jproduction + quring

the Goal ?

Exposure Machine/Operator/Material

Formation Factor — Traditionally estimated
Porosity/Tortuosity in a single lab as 0.5

| Average = 22.4
Relate to SLM — 3-4% (Purdue, LaDOT) s SD = 2.45
Pore Solution _ g
Variation Source * Production %— 0.3- ’\
Curing — Important whenused s, /
Saturation as a QC/QA tool % / \
Temperature _ Dependent on ; 0'1__ // \\
Leachin i il
g contractor quality 0.0 P —
. ; 16 18 20 22 24 26 28
Carbonation — 10% is a typical value Resistivity (0-m)
Absolute Values . ] ]
Accelerated curing N De_ata shown iIs from a central n_wlx_plant with one
Summary mixture run frequently, low variation Spragg et al. 2012

February 27th, 2015 Slides Prepared by W. Jason Weiss, wjweiss@purdue.edu © Slide 29 of 34



Components of Variation

Attention to Curing is Critical

-
2]

Sample Geometry State Stu dy

Is Resistivity

UEEECREN »  \\V/ithin-lab: 4.36%

Exposure

-
N
]

Formation Factor _ MaChl_n e/OperatO r/
Porosity/Tortuosity Matenal

Relate to SLM o MUIt"Iab 1322% 0_ , ]

- T T I T T
Pore Solution 0 20 40 60 80 100

Variation Source — Machine/Operator/ 10 Age (days)
Curing Material and curing -

Seduraton — Believed Curing
e Variation: 12.5%
eaching

SN « State Variation
Absolute Values Shown (top young’ 0 —T T

Accelerated Curing 0 40 80 120 160

Summary bottom old samples) Ao Sprthgg et al. 2013
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Electrical Resistivity
p (kohm-cm)
[+ ]
L

Temperature

Electrical Resistivity
p (kohm-cm)




Testing Temperature

 Activation Energy of

Conduction (test temp)
Rajabipour et al. 2007, Sant et al.2007

Electrical Resistivity
(€'m)

Ea—con

T T,

= exp

* In the past we noticed
differences between

 Varied the solutions
— Pore Solution: 9-12 kJ/mol
— Bulk Sample: 20-25 kJ/mol

In(Electrical Resistivity)
In[Q-m]
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0.36

0.42

0.45

0.50

40

4.8

4.4

4.0+

3.6

3.2

0.003

' T ' I '
0.0032 0.0034 0.0036

1/ Temperature
(1/K)

. Spragg et al. 2013
p =p, F-f(S) 'f(TTesting) - f(Leach) at Lequivalent
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Accelerating Curing Time

Sample Geometry

N © Many materials we test
the Goal ? take a long time to show
Exposure .
Formation Factor beneflts (91 d)
Porosity/Tortuosity [ We frequently Want t()
Relate to SLM . .
Pore Solution Speed thIS tlme Up
Variation Source [l VTRC/NRMCA methOd 160

Curing _ - |5 lime, sccelerated
Sl © |_Ime water 7/d, 23C
ESEIE  followed by 21d, 38C i«
Leaching ] ‘é “
Carbonation ¢ T e(]UIValent 56d i
Absolute Values o771 T T

* Application on the right oW o s @ 1w

Equivalent Age of Specimen
(Days)

Bu et al. 2014

Accelerated Curing

Summary shows difference ~25%
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Accelerated Curing Effects

Sample Geometry

s Resistivity Transport testing and service life prediction
the Goal? usually performed on specimens of later age
Exposure (91 dayS). £ 11

Formation Factor Yy F_T_)
Porosity/Tortuosity

relate o SLy Same maturity (DOH) could be achieved

with shorter time usmg a higher curing

Pore Solution

Variation Source

i t 200 |
Curing empera ure. . T=50°C
_ =160 -
Saturation p
(]
Temperature 81207
[ e 1 —
Leaching 91 2 80 Ea =37
Carbonation d ays E': ' kJ/mol
= 404
Absolute Values 23 85—
Accelerated Curing days 00 20 30 a0 50 80
Curing Temperature (°C)
Summary Bu et al. 2014
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Sample Geometry

Is Resistivity
the Goal ?

Exposure
Formation Factor
Porosity/Tortuosity

Relate to SLM
Pore Solution
Variation Source
Curing
Saturation
Temperature
Leaching
Carbonation
Absolute Values
Accelerated Curing

Summary
February 27th, 2015

Summary

Geometry correction iIs key (k)
Many want a table for RCPT vs p
Formation factor is the way to go (IMHO)

Electrical Properties are dependent on
— Degree of Saturation

— Test Temperature

— lonic Leaching

Accelerated curing possible but expansion
of water needs to be considered

Training necessary - sensitive in ways that
slump and compressive strength are not
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