The School of Electrical Engineering and Computer Science offers master of engineering, master of science, and doctoral degrees in computer science and electrical and computer engineering. The school also offers a Master of Arts in Interdisciplinary Studies degree in computer science. The school encourages students to develop programs of study in close cooperation with the faculty members in the areas of interest listed below.

COMPUTER SCIENCE
- Data Science and Engineering
- Artificial Intelligence and Robotics
- Cybersecurity
- Networking and Computer Systems
- Software Engineering and Human-Computer Interaction
- Programming Languages
- Theoretical Computer Science
- Health Engineering
- Computer Graphics and Visualization
- Computer Science Education

ELECTRICAL AND COMPUTER ENGINEERING
- Electronic Materials and Devices
- Integrated Electronics
- Energy Systems
- Communications and Signal Processing
- Networking and Computer Systems
- Health Engineering

EECS offers four-year financial packages to highly qualified doctoral applicants in all specialty areas, allowing students to focus more on research in their first year. EECS is committed to ensuring all full-time doctoral students are funded through internal or external sources.
RESEARCH AREAS OF EXCELLENCE

Oregon State's collaborative approach has led to world-class research and has attracted award-winning researchers to EECS. Using their collective talents, our faculty are making innovative breakthroughs and solving real-world problems.

Electronic Materials and Devices
Solves challenges including nanoscale device fabrication, integration, and measurement; thin-film deposition; magnetics; spintronics; nanophotonics; sensing; flexible electronics; and vertical transport electronics.

Integrated Electronics
Focuses on various aspects of integrated circuits and systems, microelectronic components and sensors, and advanced communication systems.

Energy Systems
Conducts research related to renewable energy, motors, generators, adjustable speed drives, power electronics, power supplies, power quality, electrical systems resiliency, and industrial process equipment and controllers.

Communications and Signal Processing
Addresses challenges related to the modeling, design, and analysis of next-generation networking and computer systems.

Networking and Computer Systems
Develops novel theories, tools, algorithms, and systems for solving real-world problems including parallel computing, cognitive networks, coding theory, and eco-informatics.

Health Engineering
Conducts research on systems, devices, and data analysis for a variety of health related applications.

Data Science and Engineering
Develops technology, processes, and software to enable effective access to, and utilization of, overwhelming amounts of information.

Artificial Intelligence and Robotics
Studies theory, algorithms, and systems for making intelligent decisions in complex and uncertain environments.

Cybersecurity
Develops tools and techniques to protect sensitive data and infrastructure against malicious attacks.

Software Engineering and Human-Computer Interaction
Focuses on helping people develop software that is effective and accurate through a multiperspective approach.

Programming Languages
Studies the design, implementation, and formalization of programming languages.

Theoretical Computer Science
Explores the limits of computation in developing algorithms and protocols that provide provable performance guarantees such as correctness and privacy.

Computer Graphics and Visualization
Analyzes, synthesizes, understands, and manipulates visual data such as images, video sequences, and 3D geometric content.

Computer Science Education
Studies theories, frameworks, pedagogical methods, and data related to educating students at all levels in areas related to computer science and, more generally, computational thinking.

ADMISSIONS AND FINANCIAL SUPPORT

We offer a number of graduate fellowships as well as graduate teaching and research assistantships. To be considered for graduate assistantships, the application deadline for fall admission is December 15.

For more information, visit eecs.oregonstate.edu/future-graduate-students.

OREGON STATE UNIVERSITY

As Oregon's leading public research university, Oregon State's impact reaches across the state and beyond.

With campuses in Corvallis and Bend, the OSU Portland Center, the Hatfield Marine Science Center in Newport, 11 academic colleges, and research and extension centers across the state, Oregon State has a presence in every one of Oregon's 36 counties, with a statewide economic impact of $2.714 billion.

COLLEGE OF ENGINEERING

Our college endeavors to create solutions that promote strong economies, healthy people, and a sustainable natural environment. Our program has a long history of producing world-class engineering graduates who make major impacts on society through significant contributions in science and technology. Alumni achievements include breakthrough innovations such as a revolutionary artificial heart valve, the computer mouse, and the concept of email.

By emphasizing practical, experiential engineering within our curriculum, we equip students with the knowledge, skills, and passion to advance innovative solutions to today's most complex engineering challenges in an inclusive environment.

CORVALLIS, OREGON

A beautiful college town nestled in the heart of the Willamette Valley, Corvallis is consistently ranked among the top 10 college towns in the nation and is known for innovation, education, entertainment, and overall livability. Corvallis embodies the spirit of the Northwest, with beautiful landscapes, friendly citizens, and an outstanding quality of life.

School of Electrical Engineering and Computer Science
Oregon State University
1148 Kelley Engineering Center
Corvallis, OR 97331
541.737.3617 | eecs.oregonstate.edu